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SOME GEOMETRICAL PROPERTIES 
OF BANACH SPACES OF POLYNOMIALS 

BY 

Y. GORDON* AND S. REISNER 

ABSTRACT 

We investigate the asymmetry, gl constants and best factorization estimates of 
the n-dimensional spaces of polynomials H~, = span{e ~kx ; k = 1,2, . .  -, n } equip- 
ped with the Lp norm for 1 <-p-_<zc. 

Notations 

We use standard notations and terminology of Banach space theory mostly as 

it appears in [15]. 

In particular for a Banach space E, E* is the dual space and for an operator 

T : E---> F, T* denotes the adjoint of T. Notations for concepts related to the 

theory of Banach ideals are taken from [9], which, together with [21], can serve 

as a general reference on the subject. 

The references for the theory of Hp spaces are [4] and [25]; also [18] can be 

used. Some special notations we use are: T is the unit circle {z ; ]z I = 1} identified 

with the interval [0,27r] and equipped with the Lebesgue measure dr. ek 
(k =0 ,  +-l, _2 ,  - - . )  are the functions on T defined by e k ( t ) = e  'k'. H~, 
(0 < p =< ~) is the n-dimensional subspace of Hp spanned by {ek ; k = I , .  •., n}. 

In parts of this paper we used for convenience a slightly different isometric 

version of H i which is given there. Instead of an introduction for the whole 

paper we open each section with a short description of its contents. 

We thank Y. Benyamini, W. B. Johnson and D. R. Lewis for some valuable 

discussions. 

§1. The asymmetry constants of H? and H i  

It is well known that H1 has local unconditional structure [17], moreover the 

Franklin basis forms an unconditional basis [24]. Recently Bourgain and 
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Pelczynski proved that H i  can be uniformly embedded in HI so that its image is 

also uniformly complemented, hence the local unconditional structure constants 

of H~' are uniformly bounded. However it is still unknown whether H~' has a 

basis with uniformly bounded unconditional constants. We shall prove in this 

section that the asymmetry constants of H~ (p = 1,0o) tend to infinity with n ; this 

implies that their symmetric basis constants tend to infinity as well. 

Recall that if E is an n-dimensional Banach space, the asymmetry constant 

s(E)  is defined to be the least h for which there exists a group of invertible 

operators G defined on E whose norms are at most h and for which the only 

operators T on E which commute with each g E G are the scalar multiples of 

the identity I t  on E ([6]). We shall denote by dg the normalized Haar measure 

associated with the compact group G. The main result of this section is: 

THEOREM |.1. There exist positive constants ck (k = 1,2, 3) such that for every 

n>=l 
(1) c,s2(HT)>= 7,(H7)= > c2X/~gn, 

(2) c3s2(H:) =~- log n. 

We need the following iemma which is proved independently in [11] and [2]. 

LEMMA 1.2. For every a > 0  there are fl = f l ( a ) ,  0 < f l < l ,  and T ( a ) > 0  

such that for every n-dimensional subspace E of L~(0, 1) with d(E, l~)<= at, E 
contains a subspace F of dimension m ( >-_ fin ) so that d (F, l~') <= a and there is a 
projection from L~ onto F with norm <= y(a) .  

The following lemma is an observation due to Lewis and Gordon: 

LEMMA 1.3. Given an m-dimensional Banach space X, let A ~L(I~ , ,X) ,  

B @ L(X,  l~) be operators for which BA  is the identity on l~ (1 <-_ p <-<_ o~). Then 

r~tX)<= ,nn-'llA II lIB IIs2(X). 

PROOE. Let G be the group of operators on X such that Ilgll  s(X) for all 

g E G. Define a : Lp(lp, G, d g ) ~  X and /3 : X ~ Lp(l~, G, dg) by 

a ( f ) =  fa g - 'A f (g )dg  ( fELp( l~ , , a ,  dg)) 

and 

([3x)(g) = Bgx (x e X, g ~ G). 

Then, clearly 11/311 --< lIB ]Is(X), and 

II ff)ll--< IIg -~ II II A II IIf(g)lldg <= II A IIs(X)llfll 
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so that II=IIA IIs(X). Moreover,  a/3 = f~g  'ABgdg, which implies that a/3 

commutes with all elements of G, hence there exists a scalar A for which 

aft  = A 1×. Therefore,  

Am = trace(oq3) = I~ trace(g ~ABg)dg = ~ trace(aB)dg = t r a c e ( B a ) =  n 

so that A = n/m. Since Lp (l~, G, dg) is an Lp space, this concludes the proof. [] 

We now need theorem 7.10, chapter 10, [25] which states 

THEOREM 1.4. Let P(z)  = co + c~z + • • • + c,z", then 

1 "P(e~'-~k""+")lP ) <=A [P(e")ledt) '/p p 

2~ ,e< 1 [P(e~2~k""÷")] p (I < p  <o¢), , IP(e" ) [  p = A s  ~-7-i~=,, 

where A, Ap are constants independent of n. 

PROOF OF THEOREM 1.1. For convenience we shall prove the theorem for the 

spaces _pt42~2"÷~ = span{e'k", - 2 n  = < k =< 2n + 1} (p = 1, oc), and define the polyno- 

mials 

Po( t )=(2n+l )  -' e ~k' and Pk(t)=Po t 2 n + l  
k = - n  

(k - 0, -- 1 , . . . ,  + n). It is easy to see that fg~P~(t)dt = 27r/(2n + 1). Let  P(t) = 
y.~_.c~e~(t) where ck are arbitrary scalars. Then P( t )E  H~ ('-~'' and IIPIIL, _--< 

(1](2n + 1))EIc~ 1. 

On the other hand Pk (21rj/(2n + 1)) = 6k.i, hence P(27rk/(2n + 1)) = ck, and by 

Theorem 1.4 applied to the space H~ (-~"+~ 

2~A IIPIL =2(2n  + 1) k=o P \ 2 ( 2 n  + 1) 

- 2(2n + 1~ P = i=o \2n  + 1] 2(2n + 1)i=_ . \ 2 n  + 11 

n 

_ 1 E Ic, I, 2(2n + 1) s=-, 

therefore span{P~;k =0 ,  _+ 1 , . . - , -+n}  is a subspace of H~ (~"÷') which is uni- 

formly isomorphic to l~ "+~. By Lemma 1.2 H~ 2(2"+') contains a subspace of 

dimension N (>= yn) uniformly isomorphic to l~' and uniformly complemented 

in L~[0,2zr], hence also in H~ (2"+~). By Lemma 1.3, 
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cN 
s2(H21'2"÷')) > 2(2n + 1) "yl(HI2'2"+'))" 

It is well known that H?  contains 1~ j°g"J uniformly complemented (supported 

on a lacunary set), thus the identity on l~Og,i can be factored as 

l l l o g n ]  A > ~tJtg'12(2n+l)l B > LI c ) H2(2~+ O D :, ltk,g-j2 

where IIAIIllDll_-<const., and IIB IIIICII=~,(H~'~"+"). By Grothendieck 
~r,(OC) <- tl DC Jl Ko, hence 

II A II II D II II B II II C II >= II BAII II DC II > K b' II BA[I "~l(DC) ~ K bl ~r2( l [ iog n ]) ~ X/log n 

(the last equivalence is by [6]). This concludes the proof of (1). 

To prove (2), we can use a simpler argument. First, H2~ t2"÷° contains a 

subspace of dimension 2n + 1 uniformly isomorphic to l~ "+~ (see [3] or notice 

that 

( - 1 ) k  sin (n  + 1 )  t 
e~(t)  = ( t  kTr ) ' 

( 2 n + l ) s i n  ~ 2 n + l  

and therefore 

H PII~: c~P~ < maxlck max k n k 
k = - n  

(where c does not depend on n). Conversely, 

[ 'A% 2 / 2 ~ I \ [  IIPIJo>- - ) = lc ,  I foral lO.  

Now, by Hahn-Banach lL n÷~ factors uniformly through H z°-"+°, therefore we 
can apply Lemma 1.3 with p = Do and obtain that s2(H~<2"+') >- c ' y ~ ( H 2 ( X n + l ) )  ~ 

log n (the last equivalence is a well known fact). 

ADDED REMARK. We observed that Lemma 1.2 is not needed since span{P~} 

is naturally complemented in H~ ten÷O. Moreover, by using another basis one can 

embed l? in H~, and l~ in H~" uniformly complemented, with m = an, for any 

0 < a < 1, with constants depending only on or. 

§2. L~-factorization of operators T : Hi---> 12 

For a Banach space E we define the G.L. constant of E, gl(E), as 
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gl(E) = sup I.Tr,(T) T : E ~ H, H a Hilbert space . 

We recall that 

gl(E) _- x(E)  <- u.c.b(E) 

where x (E)  is the (G.L.) 1.u.s.t. constant of E and u.c.b the unconditional basis 

constant of E ([18]). It is known that gl(H~) = ~ (see e.g. [18]). We shall prove 

here that gl(H"~)--~oo as n ~o¢, namely: 

PROPOSITION 2.1. gl(H~") >= c X/~g n where c is an absolute positive constant. 

Proposition 2.1 is a simple consequence of an inequality of Kwapien- 

Pelczynski [14]. We shall also give here a different proof of a somewhat stronger 

inequality from which the result of [14] follows (as Corollary 2.3 (b)). We need 

~ome prerequisites. 

(a) Let M, be the subspace of L~(T) defined by 

M. = { f E L , ( T ) [ f ( k ) = O f o r  l = < k ~ n } .  

We identify (H"~)* with L,(T)/M. by 

1 
[2"gfdt; g E H : ,  f E L , ( T )  

([f] - -  the equivalence class of f). From Kolmogorov's inequality (cf. [4]) it 

follows that for every 0 < p < 1 there is a constant dp independent of n, such that 

the operator 

which is defined by 

R. : L,(T)/M. --~ Lp(T) 

R,[ek]=ek (k = 1 , - . . , n )  

satisfies 

(1) II R.  11 < 4 .  

(b) Let E, F be finite dimensional Banach spaces and T : E  ~ F a linear 

operator. Let J : F ~  Lp (f~, ~ , /z)  (0 < p < oo) be a bounded linear operator. 

There is a unique (up to equality a.e.) measurable function ¢ : 1 ~  E* which 

satisfies for all x @ E:  

(JTx)( . )  = (x, ¢ ( . ) )  a.e. 
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From [23] and [13] it follows that 

(2) II ~ IIL~ E.,--< IIs II ~p (r*).  

PROPOSrTION 2.2. For every 0 < p < 1 there are Ap, Bp > 0 such that for all n, 

if {fk }~ =, is a basis for H~, {f*}7, =l are the coefficient functionals of {fi } and {gj }7=, 
is an orthonormal basis of 17 then for every T : H"~---~ 17 which is represented by a 

matrix (tjk ),~=j~,..,<=k~. (i.e.. Tfk =X,=, tikgj) holds 

(3) 2-'~ J,, c,=, ~=,2 t ,k(R.f*)(t)  dt}'/P<=ApTrp(T)<= B/y,(T).  

PROOF. Fix 0 < p  < 1. From [14], theorem 91, it follows that there is a 

c o n s t a n t  bp such that for all T:H~---~ l~ 

(4) % (T) -<_ bpr,(T). 

Let ~b :T---~17 be the function from (b), relative to E = l?, F =  (H~)*=  
Lt(T)/M.,  ( ~ , / x ) =  (T, dt/21r) and J = R. where T* replaces T in (b). 

2 T* R , L,(T)/M~ 0,  t .p(T) 

i.e. (R~T*x)( t )=(qb( t ) ,x)  a.e. for all x ~17.  We have, by (2), (1) and (4), 

(5) II ~ IIL~(T.'r,----< dpTrp (T)_-< bpdpT,(T). 

Let ~b(t)= Y.j%~ as(t)g j be the representation of (h in the basis {gj}. We have 

(R.T*gj)( t )  = (6(t) ,gj)  = as(t). 

On the other hand, representing (H~)* in the basis {f*} we get 

(R~r*g,)(t)  = 2 t,k (R. f*)( t )  
k = [  

hence 

(6) aj (t) = 2 tjk (R, f*) ( t )  
k = l  

which, together with (5), yields (3). [] 

COROLLARY 2.3. Let T be as in Proposition 2.2 with fi = ek, [* = [ek], 

k = l , - " , n .  
(i) Let 0 < p < 1 and Ko be a number such that for all i <-_ j <-_ m holds 

],2 I1 1 I tj~ I ~ ~ Ko tj~e~ 
k =1  k ~ !  L p ( T )  " 
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Then 

(a)  
],2 

u,(T) <- Itjk 12 ~ KoAp~rp(T)<= KoBpy,(T). 

In particular, if A = (Aj)7=, is a multiplier from Hi into l~_ then 

]r (b) v,(A) =< I Aj I ~ =< cK,,B,y,(A) 

where c is an absolute constant. 
(ii) Let e = (ek)~,=,, ek = -+ 1 and define T~:H2--~ 17 by the matrix (ektjk). 

Then 

1 (c) u,(T)<= Itjk 12 <= cAv.y,(T~) 

where c is an absolute constant. 

PROOF. The inequality v,(T)----[Xi.k Itjk I-'] "2 is a simple consequence of the 
following factorization of T 

,J 
C(T) 

T m 

> H2 

J P 
, L2(T) , H7 

Here we identify 12" with the subspace HT of H2, spanned by {et}7'_-l. I is the 
inclusion map, J the formal inclusion, P is the natural projection and ~P the 
operator in H7  defined by the matrix (to). By [19] we have 

v,(T)<= 7r2(T)rr2(J)= hs (T)=  [ .,.~k Itjk Iz] ,/2 

(hs - -  Hilbert Schmidt norm). For the right hand side inequality in (a) we use (3) 
and Minkowski's inequality which yields 

{ ,~ [ 2~ ~,:~ l k :~ t, kek (t ) I p dt ] E/P } '/z 

(7) 
--<{2-~ f,"" [ ~ {  ~ , = ,  k=, t'ke''t'l~-]"'2dt} ''" 

To prove (c), we replace in (7) (tj~) by (edjk), average over e and use the 
Khintchine-Kahane inequality. [] 
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REMARKS. Inequality (b) was proved in [14] in the infinite dimensional case 

and the same proof applies to the finite dimensional case. 

Proposition 2.2 and Corollary 2.3 can be adapted to the infinite dimensional 

case. A slight modification of the preceding proof yields the following general- 

ization of a result of [14]. Let H ' ~ = { f E L I ( T ) I f ( n ) = O  for n_->0}, for 

[~] E L,(T)/H~I, [g](n)  is well defined for all n =>0 by [~](n) = g(n). Also, the 

operator R :L~(T)/H~:--> Lp (T) (0 < p < 1) is well defined by R [ek ] = ek (0 < k) 

and bounded by a constant Kp. 

Let T : 12---> L~/H~: and denote 

t.,k = T(n, k)  = (Tg . ) (k )  

(n, k = 0, 1,2,. •., g, - -  u.v.b, in 12). 

PROPOSITION 2.4. (i) For every 0 < p < 1 there are Ap, Bp such that 

, • I(RTg.)(t)r- dt <-Ap%(T*)<-Bpy~(T). 
n 

(ii) Assume that there is a constant c such that for every n, 

lim t.kv kek >= C I t.k 12 
o ~ l  k = l  Lp(T) 

(a particular case - -  when all columns of the matrix (t,k) are supported on A2 sets 

with uniformly bounded constant), then the following are equivalent: 

(1) T factors through an L~ space. 

(2) T* is nuclear. 

(3) T* is O-absolutely summing. 

(4) [E.,k [tok 121"-'< ~.  

REMARK. Recently, Kisliakov proved and used in the proof of theorem I of 

[12] an inequality (lemma I) which is an easy corollary of Proposition 2.4. 

We now turn to the 

PROOF OF PROPOSITION 2.1. We bring two types of examples of operators 

T : H 2 ~  H~ 

for which 

(8) 7 (T) > c Ix/ ogn. 
"a', (T) - 
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EXAMPLE 1. A : H"~---* H~ is the multiplier A = (Aj);'=l, Aj = j-~/2 

(j = 1," •., n). A has a factorization 

J A 
H~ > H? > H~ 

where J is the formal identity and ~, is the multiplier defined by (Aj). We have 

~-,(A)_-< IIAII_-< g sup j: j- '  <-_K 
I<=m<--n 

(cf. [4] theorem 6.7), K independent of n. On the other hand, from Corollary 2.3 

(b) we get 

l ( j ~  )'/2 1 
7,(A) => K ]-l + K  X/log n. 

EXAMPLE 2. A:H~----->H~ ~ the Paley operator, defined as the multiplier 
A = (A,), A~ = 1 f o r j  = 2 k (k = 0 , . - . , n ) ,  A~ = 0 f o r j ~  2 k. By Paley's theorem we 

get 7rl(A)--_< II.A_II-- < _ K, while by Corollary 2.3 

1 
)',(A)--> ~-~ ~ .  

The proofs of Theorem 1.1 and Proposition 2.1 can be applied to show 

THEOREM 2.5. Let p = 1,~ and Ep be an m-dimensional space for which 

lip ~_ Ep D_ H~ (the inclusions here are the natural ones). Then 

(a) cgl(E 0 -> V~og n. 
(b) c¢(Ep) => m in ~/log n (p = 1, ~). 

PROOF. (a) Let S : H~--> H2 be the operator 
~Bog~. I 

~=l e2~ ( t ) f~f (s)e2~ (s)ds. Factoring Sle+ : E~ . , E, 
1 

identity, shows that 

defined by S ( f ) =  

)/-/2, where J is the 
SIE 1 

 ,<s[ +)  ,<J)ltskll:lIslE, II c (a constant). 

On the other hand, since E~ D H~, by Example 2 above ?l(S [E~) ~ ?l(S [ , : )  => 

c "x/log n, which proves (a). 

(b) The proof for p -- 1 is identical to that of Theorem 1.1 (1), using the full 

strength of Lemma 1.2 which implies that El contains l~ ~"j uniformly com- 

plemented (0 < y < 1 independent of n and E~), and then applying Lemma 1.3 

together with the fact that E1 contains l[ '°*2"j uniformly complemented and 

therefore 
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3' , (E,)--> ~ "  . t , , ,~.  = ~.,~._. -"J) > c v ~ o g  n. 

In the case p = 0% we note first that E~ contains l~ "/'-j uniformly complemented, 

and since L~ is a Banach lattice, by [8] and (a) 3,~(E~) => gl(E0 > c IV~oog n, thus 

Lemma 1.3 concludes the proof. 

REMARKS. (l) We do not know if the estimate of (b) for p = ~ can be 

improved to cs-~(E~)_-> m-~n log n (which is true if E~ = H"0. 

(2) Theorem 2.5 is no longer true if it is only assumed that Ep D H~, 

isomorphically (p = i, ~), because by [25] (ch. X, theorem 7.28) and Theorem 1.4 

above l~" contains H~ uniformly for p = 1 and ~. 

§3. Best factorization estimates for H~, spaces 

" Hp , then By Theorem 1.4, if we take {P~}k=-, to be the basis in ,_,+l 

d(H~"+Z,l~"÷i)<=c, if l < p < ~ c ,  and d(H~"÷',l~"~)<=clog(n+l) if p - - I  

or ~. Since d(17,, l~) is known for all values of p, q [10], it is easy to get trivial 

estimates for d(H~"+I,H~"~), which are also asymptotically exact in n when 

1 < q < p < ~c. We shall derive here some better and more general estimates in 

the non-trivial cases where p or q is in {1,oc}. 

Given Banach spaces E, F and G, let ~ ( E , F , G )  denote the quantity 

inf [[A II liB It II Cll, where the infimum ranges over all A ~ L(E, F), B ~ L(F, G), 
C U L ( G , E )  for which CBA = 1~. If F =  G, we write ~ ( E , F ) =  o%(E,F,F), 
and clearly d(E, F)= ~(E, F) if E and F are isomorphic. 

If we denote by _pP("~ the natural projection of Lp onto H~,, it is well known that 

IlP~"'ll<_-cv for l < p < ~  [4], and [I o(''tl<-p , , = c l o g ( n + l ) i f  p = l  or ~, thus 

~(H~,Hp)<=cp if l < p < ~ ,  and ~(H"~,H~)<-_clog(n+l). Bourgain and 

Pelczynski recently proved ~(H~,  Hp)_  <- C, for all 1 < p < ~. 

Throughout we denote by c, c~, c2, etc., constants, and by c, constants which 

depend on p; the same letter may denote different constants in some cases. 

We start with the following straightforward lemma whose proof is omitted. 

LEMMA 3.1. Let .p.qt("~: H~--->Hq" be the natural injection, then 1[I~"~11~ 
max{I, n ~lp-'/q } for every p,q ~ [1,~]. 

If T is an operator on 17 into some Banach space, l(T) will denote 
(E~ Ily~7=, g, (~,)T(e,) l l - ' )"- ' .  where {g, (to)}~' is a sequence of standard independent 

normalized Gaussian variables, and {e,}~' any orthonormal basis for l~' (see [1] for 

details and references). 
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LEMMA 3.2. I f  1 <= p < ~, then for all n > 1 

and 

lgrtnr '~ (.7 ~.,_~ j ~  l(I2.p) X/~nn, 

l(r,.2) - ~ n  log n. 

PROOF. For convenience we replace n by 2n +1 and denote by O~ p~= 

X/2n + 1Pk (k = 0, + 1 , . . . ,  - n) the basis for the space H~ °+'. Let Lp °+' be the 

L, space of dimension 2n + 1 with the normalized measure that assigns mass 

(2n + 1)-' to each basis element e~ p~, k = 0, +-- 1,- •., +- n. 

""+' is the basis to basis map Q~"~---~ e~ p~, then by Theorem 1.4 If T : H-p "-~ L ~ "+l 

both IlTll and IIT-'II are uniformly bounded with respect to n for every 

1 < p < 0¢. Thus the estimates for 1 < p < o¢ follow from the same estimates for 

L~ "+' which are easy to verify (see e.g. [1]). 

If p = 1, using the well known properties of the Gaussian variables we have 

i k t  

k = l  ~ 

--ElEgke'~'lLC:2~ f:~(EIEgke'k'l) dt 
1 2~ 

The case p = ~ needs some additional computations. Since Ok = X/~n + 1 Pk 

(k = 0, -- 1 , . . . ,  -+- n) is an orthonormal basis for H~ "+z and the quantities 

t(I~2.U '') ~ E~ (to)ek , .... 
k ® 

are both independent of the choice of the orthonormal basis {ek}7,=-, in H_~"+', 

therefore it is enough to prove E~ IIET,=-.gk (to)Pk I1~--X/i-0gn. 

Since Pk (27r.//(2n + 1)) = &,,, it follows that E IIX g~Pk I1~ >- E(maxj I g, I) 

X/log n. 

To prove the converse inequality, let A = IIIXgk(~,)P~ I1~> ,~], where a will 

be chosen tater. Then 

<=a + E ( t g k ( ° ~ ) l ~ ( d w )  <=a +(2n  + 1 )  ~X/-~A-). 
d,4 
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Let tk = kcr/4n (k = 0, +- 1 , . . . ,  +-- 4n). By theorem 7.28 [25] there exists c~ > 0  
(independent of n)  for which IIPII,~ o*, =< c, maxk IP(tk)l for every P E H~ "÷~. 

Therefore 

"(A)<----'([maxlk~=_ gk(tO)Pk(t~)[>a/c']) 

_-<10n max ~ ( [  [ k=_, £ gk(w)Pk(t)[>a/C,]). 

Due to the symmetry of the expression in the intervals 

= [ ( 2 k - 1 ) T r  (2k+l)Tr]  (k =0 ,  + l , ' - .  + n )  
h [ 2 n + l  ' 2 n + l  J - ' -  

the maximum is achievcd at to E L~. Using the identity 

pk(t)=Po(t 2~_.k ~ =  ( -  l)k sin (n  + l )  t 

2 n + l ]  (2n + 1)sin ( 2 kTr 2, T1) 
it follows that [Po(t)[ =< 1 and I Pk (t)l <= c2/I k [ for all 1 _-< [k [ ---- n and t E Io, hence 

by the contraction principle 

By Tchebychev's inequality 

and so 

(A ) <= c6ne-C"~". 

Therefore, (2n + 1)2~(A)<=c6(2n +l)2ne -c~2 which shall tend to zero if we 
choose a =2c7~12X/log(n + 1). This completes the proof of 1(I~"2)~ X/n log n. 

Since (Hi)* is identified with L,(T)/M,, therefore 
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( 112 ),,2 1 { ¥ { n ) * - I ~ -  \ ikt • ~-2.~ ) -  E gke <--l(I~"., ~ 

On the other hand it follows from the boundedness of the natural operator 

R. :L,(T)/M~ ~ L,/2(T) and Kahane's inequality that 

1(I~72" ') - E ~ (H:)* H;,~ 

[] 

If {x~}7 is a finite sequence of vectors in a Banach space X, we denote 

~(x,)=sup(llY.t,x, ll/(~lt, l~y2), which is also the norm of the map lT--->X 
induced by e~ ~ x~. 

We shall need the following theorem proved in [1]. 

THEOREM 3.3. Let E, F, G be Banach spaces, F, C_ G, and suppose {e~, e*}L, 
* m is a basis with associated coefficient functionals for E, and {)~,f;}j=, is a 

biorthogonal sequence in G where {fj}j%, C F and m >- n. Then 

~(E ,F ,  G)<-_-cm ' {e2(e*)Eo, ll,=~g;(to)fjll+ e2~)E~ll~=tg,(to)e*ll } 

THEOREM 3.4. For every Banach space X, Y for which H i  C_ X C_ L~, H7 C_ 
Y C_ L,, and every l < p  < 

(i) ~(H~,, H i ,  X) - d (H~,, H"~) - min{n '/", n ,/2}, 

(ii) ,~(H~, n~', Y) - d (H i , n~') - min{n ,/2, n ' -  ~/p }. 

PROOF. (i) We factor the identity on H i as follows: 

H ~ , ~ H I  , ~ X ~ L p ~  Hp" 

where j is the inclusion, I is the restriction to X of the injection L~--> Lp. Using 

the estimates of Lemma 3.1 

n n ~ n n ~ d(np,  n o _ -  ~ ( H p ,  H~, X ) =  11I~"21111Jll llIII II P~")II < cpn '̀ p 
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Conversely, if we denote by ap (E) ([3p (E)) the type p (cotype p) constants of 

a Banach space E, then using the facts that H~ contains lt~ "/2j uniformly, and that 
n n n Lp has cotype p if p = 2 ,  it follows that d(Hp,H"~)>=[3p(H~)/[Jp(Hp)= 

cA3 p (l~ "/-~j) - n '/P. Thus (i) is proved for p => 2. 

Let 1 < p =< 2 and {e ~k', e~k'}7,=j be the basis, and biorthogonal sequence, in the 

spaces H i and X respectively. Applying the estimates of Lemmas 3.1 and 3.2 we 

e2({e `k' } C H i )  = IIz 711 = 1, 

e2({e 'k' } c (H~, ) * )=  II t';. ll n 

( h i  e2({e'k'}C H:)  III,_.~ll~V-nn, 
ez({e'k'} C X * ) =  < e2({e 'k' } C L , ) =  II lrt7,'ll = 1, 

and 

E H ~ g k e " ' "  - V~n logn, 

so on using Theorem 3.3 we get 

,~(n~, H"~, X) <= Cp X/~n. 

Since H~" contains I tn/:l uniformly, using the fact that Lp has cotype 2 if 

1 = p =< 2, the lower estimate follows from 

(9) ,~(Hi ,H~,X)> d(Hp,H~)=cp~2(H"~)>=cp[32(lk "hI) V'~n. 

(ii) If 1 < p _-< 2, consider the factorization of H i  

n n n Hp ,~--;z~ Ht ~ Y - - " ~  Hp 
• p.~ i n l v  

where j is the inclusion and R is the operator from L~ to H i defined by 

1 fo 2'~ R(f)  =~----~ ~ e 'k' f(s)e-'k'ds. 

Identifying (H~,)* with Hi. (1/p + 1/p* = 1), we obtain 

get 
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II R 11 = 11R *1] --< cp 111~2~ 11 - n '/"" 

so d (Hp, H;)  <= ~ ( H p ,  H;,  Y )  <= c,n '/P'. 
Conversely, since H~' contains l~ "/-'1 uniformly and Lp has type p if 1 < p =< 2, it 

follows that 

d(Hp,  HT) >= ap (Hr) /a ,  (H;)  >- cea . (ll, "'-~j) >= cp [n/2] lip'. 

If 2_-< p < oc we apply the estimates of Lemmas 3.2 and 3.3 together with 

Theorem 3.4 to get in the same manner as in (i) the inequality ~ ( H ; ,  H;', Y)_--- 

cp X/n. On the other hand, since H;' contains a uniformly complemented 

subspace of dimension [-/n]= m uniformly isomorphic to l~" (for 0 <  T <  1 

independent of n), therefore (H~')* contains l"  uniformly, and so identifying 

(H~)* with a subspace of L~. and using the fact that every operator from l~' to Lp. 

is 2-summing, we obtain 

d ( g ? ,  H~,) = d((H;)*,  (Hp)*) 

>-_ cp in f{d(Z, /") ;  Z C Lp., dim Z = m } 

>= ccp inf{~2(Z); Z C Lp., dim Z = m } 

x/n 

since ~r2(Z)= d ~ m Z  for every Banach space Z [6]. [] 

THEOREM 3.5. If {p, q} = {1, oc} and Xq is any space satisfying H'~ C_ Xq C_ Lq, 
then 

n n c X/n <= d(HT, , H"I <-~._ ~ ( H p , H q , X q )  <= d Xf-nn log n 

for all integers n >= 2. 

PROOF. The lower estimate follows from inequality (9) above. The upper 

estimate follows from using the estimates of Lemmas 3.1 and 3.2 together with 
Theorem 3.3. [] 

REMARKS. (1) It is unknown whether any of the inequalities in Theorem 3.5 is 
sharp. 

If however the dimension of H i is increased to a . n  in Theorem 3.5 then 

~(H~,, Hq n) - X/n, where 2 _-< a < oo is independent of n. Indeed H~" contains l~ 

uniformly complemented, hence it suffices to prove X/-n>=d(l"~,H7). But if 

T :  H~'---~ l• is the map defined by T(e 'k') = ek (1 _-< k _-< n), then II rll ; I1 T* II = 1 
and 
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i t ( n T ) *  

< s u p ( ~ l t k ( / i ~ l t k { 2 ) = X / n .  

Similarly H~ n contains l~' uniformly complemented for some ~c > a => 2 inde- 

pendent  of n, hence it suffices to prove d(17, H2)<=X/-n to imply that 

~(H"~, HF)-<- c \Tn. But the proof is identical for this case too. The facts that 

~ ( H ~ ,  H f )  > c V~n if {p,q} = {1,oc} are proved as in Theorems 3.4 and 3.5. 

(2) It is easy to see that 

ci V~og n <= ~ ~ < d(Hl ,  ll ) = c21og n. 

It would be interesting to know the exact values for this quantity. 

§4. A remark on absolutely summing operators from Ha 

In this section, which is not directly connected with the preceding sections, we 

bring an observation which answers problem 3.2 in [18]. 

Theorem 2.4 in [18] asserts that for 1 < p < oo every p-absolutely summing 

opera tor  from A is strictly p-integral and there is a constant C o such that 

ip (T) < C.r6 (T) 

for all such T. Problem 3.2 asks whether every p-a.s. T from Ha is p-integral.  

Forever), Banach space E and T E r 6 (Ha, E)  (1 < p  <oo) PROPOSITION 4.1. 

T is p-integral and 

ip(T)<-_ Cp~'~(T). 

(Cp is the same constant as above.) 

PROOF. For Banach spaces E, F and T : E ~ F a linear operator ,  we define 

(iflzrp)(T) to be 

/_e_ (T) = sup ip(ST); 
rr~ 

the sup is taken over all Banach spaces G and operators  S:F---~ G with 

7rp (S)_-- < 1. ip and ~-p are perfect ideal norms, also r 6 is semi-tensorial (see [22] 

for definition) hence by [22] proposition 2.7 we conclude that ip/r 6 is a perfect 

ideal norm. 
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From [20] it follows now that ip/Trp = (ip/~rp)", i.e. ( i p / T r p ) ( T )  = ( i o / T r p ) ( T * * )  

for all operators T : E ~ F. 
H~ is a 1-complemented subspace of A **; it is enough, therefore, to show that 

By theorem 2.4 [18] we have 

hence 

i 
(IDA..) =< Cp. ~rp 

/_a (IdA) =< G rrp 

(IDA..) = J a  (Id**) =/ix|_.te_l" (IdA) = ~ (IdA) =< Cp. [] 
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