SOME GEOMETRICAL PROPERTIES OF BANACH SPACES OF POLYNOMIALS

BY

Y. GORDON* AND S. REISNER

ABSTRACT

We investigate the asymmetry, gl constants and best factorization estimates of the *n*-dimensional spaces of polynomials $H_n^* = \text{span}\{e^{ikx}$; $k = 1, 2, \dots, n\}$ equipped with the L_p norm for $1 \leq p \leq \infty$.

Notations

We use standard notations and terminology of Banach space theory mostly as it appears in [15].

In particular for a Banach space E, E^* is the dual space and for an operator $T: E \rightarrow F$, T^* denotes the adjoint of T. Notations for concepts related to the theory of Banach ideals are taken from [9], which, together with [21], can serve as a general reference on the subject.

The references for the theory of H_p spaces are [4] and [25]; also [18] can be used. Some special notations we use are: **T** is the unit circle $\{z\}$ | z | = 1} identified with the interval $[0,2\pi]$ and equipped with the Lebesgue measure *dt.* e_k $(k = 0, \pm 1, \pm 2, \cdots)$ are the functions on **T** defined by $e_k(t) = e^{ikt}$. H_p^n $(0 < p \le \infty)$ is the *n*-dimensional subspace of H_p spanned by $\{e_k : k = 1, \dots, n\}$. In parts of this paper we used for convenience a slightly different isometric version of H_p^n which is given there. Instead of an introduction for the whole paper we open each section with a short description of its contents.

We thank Y. Benyamini, W. B. Johnson and D. R. Lewis for some valuable discussions.

§1. The asymmetry constants of H_1^n and H_n^n

It is well known that H_1 has local unconditional structure [17], moreover the Franklin basis forms an unconditional basis [24]. Recently Bourgain and

' Supported in part by NSF grant $#$ MCS-8109561.

Received July 13, 1981 and in revised form October 21, 1981

Pelczynski proved that H_1^n can be uniformly embedded in H_1 so that its image is also uniformly complemented, hence the local unconditional structure constants of H_{\perp}^* are uniformly bounded. However it is still unknown whether H_{\perp}^* has a basis with uniformly bounded unconditional constants. We shall prove in this section that the asymmetry constants of $H_p^n(p = 1, \infty)$ tend to infinity with n; this implies that their symmetric basis constants tend to infinity as well.

Recall that if E is an *n*-dimensional Banach space, the asymmetry constant $s(E)$ is defined to be the least λ for which there exists a group of invertible operators G defined on E whose norms are at most λ and for which the only operators T on E which commute with each $g \in G$ are the scalar multiples of the identity 1_F on E ([6]). We shall denote by dg the normalized Haar measure associated with the compact group G . The main result of this section is:

THEOREM 1.1. *There exist positive constants* c_k ($k = 1, 2, 3$) *such that for every* $n \geq 1$

- (1) $c_1 s^2(H_1^n) \geq \gamma_1(H_1^n) \geq c_2 \sqrt{\log n}$,
- (2) $c_3s^2(H''_x) \ge \log n$.

We need the following lemma which is proved independently in [11] and [2].

LEMMA 1.2. *For every* $\alpha > 0$ *there are* $\beta = \beta(\alpha)$, $0 < \beta < 1$, *and* $\gamma(\alpha) > 0$ *such that for every n-dimensional subspace E of L₁(0, 1) with* $d(E, l_1^r) \leq \alpha$ *, E contains a subspace F of dimension m* ($\geq \beta n$) *so that d*(F, l^m) $\leq \alpha$ *and there is a projection from L₁ onto F with norm* $\leq \gamma(\alpha)$.

The following lemma is an observation due to Lewis and Gordon:

LEMMA 1.3. *Given an m-dimensional Banach space X, let* $A \in L(l_p, X)$, $B \in L(X, l_{p}^{n})$ be operators for which BA is the identity on l_{p}^{n} ($1 \leq p \leq \infty$). Then $\gamma_p(X) \leq mn^{-1} ||A|| ||B|| s^2(X).$

PROOF. Let G be the group of operators on X such that $||g|| \leq s(X)$ for all $g \in G$. Define $\alpha : L_p(l_p^n, G, dg) \rightarrow X$ and $\beta : X \rightarrow L_p(l_p^n, G, dg)$ by

$$
\alpha(f) = \int_G g^{-1}Af(g)dg \qquad (f \in L_p(l_p^n, G, dg))
$$

and

 $(\beta x)(g) = Bgx$ $(x \in X, g \in G).$

Then, clearly $\|\beta\| \leq \|B\|s(X)$, and

$$
\|\alpha(f)\| \leq \int_G \|g^{-1}\| \|A\| \|f(g)\| dg \leq \|A\| s(X)\|f\|
$$

so that $\|\alpha\| \leq \|A\|_S(X)$. Moreover, $\alpha\beta = \int_G g^{-1}ABg dg$, which implies that $\alpha\beta$ commutes with all elements of G, hence there exists a scalar λ for which $\alpha\beta = \lambda \, 1_x$. Therefore,

$$
\lambda m = \text{trace}(\alpha \beta) = \int_G \text{trace}(g^{-1}ABg) dg = \int_G \text{trace}(AB) dg = \text{trace}(BA) = n
$$

so that $\lambda = n/m$. Since $L_p(l_p^n, G, dg)$ is an L_p space, this concludes the proof. \Box

We now need theorem 7.10, chapter 10, [25] which states

THEOREM 1.4. *Let* $P(z) = c_0 + c_1 z + \cdots + c_n z^n$, then

$$
\left(\frac{1}{n+1}\sum_{k=0}^{n} |P(e^{i2\pi k/(n+1)})|^p\right)^{1/p} \leq A \left(\int_0^{2\pi} |P(e^{it})|^p dt\right)^{1/p} \quad (1 \leq p \leq \infty),
$$

$$
\left(\int_0^{2\pi} |P(e^{it})|^p\right)^{1/p} \leq A_p \left(\frac{1}{n+1}\sum_{k=0}^{n} |P(e^{i2\pi k/(n+1)})|^p\right)^{1/p} \quad (1 < p < \infty),
$$

where A, Ap are constants independent of n.

PROOF OF THEOREM 1.1. For convenience we shall prove the theorem for the spaces $H_p^{2(2n+1)} = \text{span}\{e^{ikt}; -2n \leq k \leq 2n + 1\}$ ($p = 1, \infty$), and define the polynomials

$$
P_0(t) = (2n + 1)^{-1} \sum_{k=-n}^{n} e^{ikt}
$$
 and $P_k(t) = P_0 \left(t - \frac{2\pi k}{2n + 1} \right)$

 $(k = 0, \pm 1, \dots, \pm n)$. It is easy to see that $\int_0^{2\pi} P_k^2(t) dt = 2\pi/(2n + 1)$. Let $P(t) =$ $\sum_{k=-n}^{n} c_k P_k^2(t)$ where c_k are arbitrary scalars. Then $P(t) \in H_1^{2(2n+1)}$ and $||P||_{L_1} \leq$ $(1/(2n + 1))\sum |c_k|.$

On the other hand $P_k(2\pi j/(2n + 1)) = \delta_{k,j}$, hence $P(2\pi k/(2n + 1)) = c_k$, and by Theorem 1.4 applied to the space $H_1^{2(2n+1)}$

$$
2\pi A \|P\|_{L_1} \geq \frac{1}{2(2n+1)} \sum_{k=0}^{4n+1} \left| P\left(\frac{2\pi k}{2(2n+1)}\right) \right|
$$

$$
\geq \frac{1}{2(2n+1)} \sum_{j=0}^{2n} \left| P\left(\frac{2\pi j}{2n+1}\right) \right| = \frac{1}{2(2n+1)} \sum_{j=-n}^{n} \left| P\left(\frac{2\pi j}{2n+1}\right) \right|
$$

$$
= \frac{1}{2(2n+1)} \sum_{j=-n}^{n} |c_j|,
$$

therefore span $\{P_k^2; k = 0, \pm 1, \dots, \pm n\}$ is a subspace of $H_1^{2(2n+1)}$ which is uniformly isomorphic to l_1^{2n+1} . By Lemma 1.2 $H_1^{2(2n+1)}$ contains a subspace of dimension N ($\geq \gamma n$) uniformly isomorphic to l_1^N and uniformly complemented in $L_1[0,2\pi]$, hence also in $H_1^{2(2n+1)}$. By Lemma 1.3,

$$
s^{2}(H_{1}^{2(2n+1)}) \geq \frac{cN}{2(2n+1)} \gamma_{1}(H_{1}^{2(2n+1)}).
$$

It is well known that H_1^n contains $l_2^{\lfloor \log n \rfloor}$ uniformly complemented (supported on a lacunary set), thus the identity on $l_2^{\lfloor \log n \rfloor}$ can be factored as

$$
l_2^{\lfloor \log n \rfloor} \xrightarrow{A} H_1^{2(2n+1)} \xrightarrow{B} L_1 \xrightarrow{C} H_1^{2(2n+1)} \xrightarrow{D} l_2^{\lfloor \log n \rfloor}
$$

where $||A|| ||D|| \leq$ const., and $||B|| ||C|| = \gamma_1(H_1^{2(2n+1)})$. By Grothendieck $\pi_1(DC) \leq ||DC|| K_G$, hence

$$
||A|| ||D|| ||B|| ||C|| \ge ||BA|| ||DC|| \ge K_G^{-1} ||BA|| \pi_1(DC) \ge K_G^{-1} \pi_2(I_2^{\lfloor \log n \rfloor}) \sim \sqrt{\log n}
$$

(the last equivalence is by [6]). This concludes the proof of (1).

To prove (2), we can use a simpler argument. First, $H_{\infty}^{2(2n+1)}$ contains a subspace of dimension $2n + 1$ uniformly isomorphic to l_{∞}^{2n+1} (see [3] or notice that

$$
P_{k}(t) = \frac{(-1)^{k} \sin \left(n + \frac{1}{2}\right) t}{(2n + 1) \sin \left(\frac{t}{2} - \frac{k\pi}{2n + 1}\right)},
$$

and therefore

$$
||P||_{\infty} = \left\| \sum_{k=-n}^{n} c_k P_k^2 \right\|_{\infty} \leq \left(\max_{k} |c_k| \right) \max_{t} \sum_{k=-n}^{n} P_k^2(t) \leq c \max_{k} |c_k|
$$

(where c does not depend on n). Conversely,

$$
||P||_{\infty} \geq \left| \sum_{k=-n}^{n} c_k P_k^2 \left(\frac{2\pi l}{2n+1} \right) \right| = |c_i| \quad \text{for all } l.
$$

Now, by Hahn-Banach l_{∞}^{2n+1} factors uniformly through $H_{\infty}^{2(2n+1)}$, therefore we can apply Lemma 1.3 with $p = \infty$ and obtain that $s^2(H_{\infty}^{2(2n+1)}) \geq c\gamma_{\infty}(H^{2(2n+1)})$ ~ $log n$ (the last equivalence is a well known fact).

ADDED REMARK. We observed that Lemma 1.2 is not needed since span $\{P_k^2\}$ is naturally complemented in $H_1^{2(2n+1)}$. Moreover, by using another basis one can embed l_1^m in H_1^n , and l_{∞}^m in H_{∞}^n uniformly complemented, with $m = \alpha n$, for any $0 < \alpha < 1$, with constants depending only on α .

§2. L_1 -factorization of operators $T : H^n_* \to l_2$

For a Banach space E we define the G.L. constant of E, $gl(E)$, as

$$
gl(E) = \sup \left\{ \frac{\gamma_1(T)}{\pi_1(T)} \middle| T : E \to H, H \text{ a Hilbert space} \right\}.
$$

We recall that

$$
gl(E) \leq \chi(E) \leq u.c.b(E)
$$

where $\chi(E)$ is the (G.L.) l.u.s.t. constant of E and u.c.b the unconditional basis constant of E ([18]). It is known that $gl(H_x) = \infty$ (see e.g. [18]). We shall prove here that $gl(H_{\infty}^{n})\rightarrow\infty$ as $n\rightarrow\infty$, namely:

PROPOSITION 2.1. $gl(H^*_z) \ge c \sqrt{\log n}$ where c is an absolute positive constant.

Proposition 2.1 is a simple consequence of an inequality of Kwapien-Pelczynski [14]. We shall also give here a different proof of a somewhat stronger inequality from which the result of [14] follows (as Corollary 2.3 (b)). We need some prerequisites.

(a) Let M_n be the subspace of $L_1(T)$ defined by

$$
M_n = \{ f \in L_1(\mathbf{T}) \, | \, \hat{f}(k) = 0 \text{ for } 1 \leq k \leq n \}.
$$

We identify $(H_{\infty}^{n})^*$ with $L_1(T)/M_n$ by

$$
\langle g, [f] \rangle = \frac{1}{2\pi} \int_0^{2\pi} g \overline{f} dt; \qquad g \in H^{\pi}_*, \quad f \in L_1(\mathbf{T})
$$

 $([f]$ -- the equivalence class of f). From Kolmogorov's inequality (cf. [4]) it follows that for every $0 < p < 1$ there is a constant d_p independent of n, such that the operator

 $R_n: L_1(T)/M_n \to L_p(T)$

which is defined by

$$
R_n[e_k] = e_k \qquad (k = 1, \cdots, n)
$$

satisfies

(1) $\|R_n\| < d_p$.

(b) Let E, F be finite dimensional Banach spaces and $T: E \rightarrow F$ a linear operator. Let $J: F \to L_p(\Omega, \Sigma, \mu)$ $(0 < p < \infty)$ be a bounded linear operator. There is a unique (up to equality a.e.) measurable function $\phi : \Omega \rightarrow E^*$ which satisfies for all $x \in E$:

$$
(JTx)(\cdot) = \langle x, \phi(\cdot) \rangle \quad \text{a.e.}
$$

From [23] and [13] it follows that

(2) II ~ IIL~ E.,--< IIs II ~p (r*).

PROPOSITION 2.2. *For every* $0 < p < 1$ there are A_p , $B_p > 0$ such that for all n, *if* ${f_k}_{k=1}^n$ *is a basis for* H_∞^n , ${f_k}_k^n$, *are the coefficient functionals of* ${f_k}$ *and* ${g_i}_{i=1}^m$ *is an orthonormal basis of* l_2^m *then for every T : Hⁿ_x* \rightarrow *l₂^m which is represented by a matrix* $(t_{jk})_{1 \leq j \leq m, 1 \leq k \leq n}$ (*i.e.*, $Tf_k = \sum_{j=1}^{m} t_{jk}g_j$) holds

$$
(3) \qquad \left\{\frac{1}{2\pi}\int_0^{2\pi}\bigg[\sum_{j=1}^m\bigg|\sum_{k=1}^n t_{jk}(R_nf_k^*)(t)\bigg|^2\bigg]^{p/2}dt\right\}^{1/p}\leqq A_p\pi_p(T)\leqq B_p\gamma_1(T).
$$

PROOF. Fix $0 < p < 1$. From [14], theorem 91, it follows that there is a constant b_p such that for all $T: H''_2 \to l_2$

$$
\pi_{p}(T) \leq b_{p} \gamma_{1}(T).
$$

Let $\phi : \mathbf{T} \to l_2^m$ be the function from (b), relative to $E = l_2^m$, $F = (H^m z)^* =$ $L_1(T)/M_n$, $(\Omega, \mu) = (T, dt/2\pi)$ and $J = R_n$ where T^* replaces T in (b).

$$
l_2^m \xrightarrow{T^*} L_1(\mathbf{T})/M_n \xrightarrow{R_n} L_p(\mathbf{T})
$$

i.e. $(R_nT^*x)(t) = \langle \phi(t), x \rangle$ a.e. for all $x \in l_2^m$. We have, by (2), (1) and (4),

(5)
$$
\|\phi\|_{L_p(\mathbf{T},T_2^{\mathbf{T}})} \leq d_p \pi_p(T) \leq b_p d_p \gamma_1(T).
$$

Let $\phi(t) = \sum_{i=1}^{m} a_i(t)g_i$ be the representation of ϕ in the basis {g_i}. We have

$$
(R_nT^*g_i)(t) = \langle \phi(t), g_i \rangle = a_i(t).
$$

On the other hand, representing $(H^{\pi}_{\infty})^*$ in the basis $\{f^*_{k}\}\$ we get

$$
(R_nT^*g_i)(t) = \sum_{k=1}^n t_{jk}(R_nf_k^*)(t)
$$

hence

(6)
$$
a_{j}(t) = \sum_{k=1}^{n} t_{jk} (R_{n} f_{k}^{*})(t)
$$

which, together with (5), yields (3). \Box

COROLLARY 2.3. Let T be as in Proposition 2.2 with $f_k = e_k$, $f_k^* = [e_k]$, $k = 1, \dots, n$.

(i) Let $0 < p < 1$ and K_0 be a number such that for all $i \leq j \leq m$ holds

$$
\left[\sum_{k=1}^n|t_{jk}|^2\right]^{1/2}\leq K_0\left\|\sum_{k=1}^n t_{jk}e_k\right\|_{L_p(\mathbf{T})}.
$$

Then

(a)
$$
\nu_1(T) \leq \left[\sum_{j,k} |t_{jk}|^2 \right]^{1/2} \leq K_0 A_p \pi_p(T) \leq K_0 B_p \gamma_1(T).
$$

In particular, if $\Lambda = (\lambda_j)_{j=1}^n$ *is a multiplier from H_xⁿ</sub> into* l_2^n *then*

(b)
$$
\nu_1(\Lambda) \leqq \left[\sum_{j=1}^n |\lambda_j|^2\right]^{1/2} \leqq cK_0 B_p \gamma_1(\Lambda)
$$

where c is an absolute constant.

(ii) Let $\varepsilon = (\varepsilon_k)_{k=1}^n$, $\varepsilon_k = \pm 1$ and define $T_{\varepsilon}: H_{\infty}^n \to l_{\infty}^m$ by the matrix $(\varepsilon_k t_{jk})$. *Then*

(c)
$$
\nu_1(T) \leq \left[\sum_{j,k} |t_{jk}|^2 \right]^{1/2} \leq c A v_{\epsilon} \gamma_1(T_{\epsilon})
$$

where c is an absolute constant.

PROOF. The inequality $v_1(T) \leq [\sum_{j,k} |t_{jk}|^2]^{1/2}$ is a simple consequence of the following factorization of T

Here we identify l^m_2 with the subspace H^m_2 of H_2 , spanned by $\{e_i\}_{i=1}^m$. I is the inclusion map, J the formal inclusion, P is the natural projection and \tilde{T} the operator in H_2^m defined by the matrix (t_{ij}) . By [19] we have

$$
\nu_1(T) \leq \pi_2(\tilde{T})\pi_2(J) = \text{hs}(\tilde{T}) = \left[\sum_{j,k} |t_{jk}|^2\right]^{1/2}
$$

 $(hs$ -- Hilbert Schmidt norm). For the right hand side inequality in (a) we use (3) and Minkowski's inequality which yields

(7)

$$
\left\{\sum_{j=1}^{m}\left[\frac{1}{2\pi}\int_{0}^{2\pi}\left|\sum_{k=1}^{n}t_{jk}e_{k}(t)\right|^{p}dt\right]^{2/p}\right\}^{1/2}
$$

$$
\leq \left\{\frac{1}{2\pi}\int_{0}^{2\pi}\left[\sum_{j=1}^{m}\left|\sum_{k=1}^{n}t_{jk}e_{k}(t)\right|^{2}\right]^{p/2}dt\right\}^{1/p}.
$$

To prove (c), we replace in (7) (t_{jk}) by $(\varepsilon_k t_{jk})$, average over ε and use the Khintchine-Kahane inequality. \Box

REMARKS. Inequality (b) was proved in [14] in the infinite dimensional case and the same proof applies to the finite dimensional case.

Proposition 2.2 and Corollary 2.3 can be adapted to the infinite dimensional case. A slight modification of the preceding proof yields the following generalization of a result of [14]. Let $H_1^0 = \{f \in L_1(T) | \hat{f}(n) = 0 \text{ for } n \ge 0\}$, for $[\hat{\varrho}] \in L_1(T)/H_1^0$, $[\hat{\varrho}](n)$ is well defined for all $n \ge 0$ by $[\hat{\varrho}](n) = \hat{\varrho}(n)$. Also, the operator $R: L_1(T)/H_1^0 \to L_p(T)$ ($0 < p < 1$) is well defined by $R[e_k] = e_k$ ($0 \le k$) and bounded by a constant K_p .

Let $T: I_2 \rightarrow L_1/H_1^0$ and denote

$$
t_{n,k}=\hat{T}(n,k)=(\widehat{Tg}_n)(k)
$$

 $(n, k = 0, 1, 2, \dots, g_n \text{ -- u.v.b. in } l_2).$

PROPOSITION 2.4. (i) *For every* $0 < p < 1$ *there are A_p*, *B_p* such that

$$
\left\{\frac{1}{2\pi}\int_0^{2\pi}\bigg[\sum_n|(RTg_n)(t)|^2\bigg]^{p/2}dt\right\}^{1/p}\leq A_p\pi_p(T^*)\leq B_p\gamma_\infty(T).
$$

(ii) *Assume that there is a constant c such that for every n,*

$$
\lim_{v\to 1^-}\bigg\|\sum_{k=1}^{\infty}t_{nk}v^ke_k\bigg\|_{L_p(\mathbf{T})}\geq c\left(\sum_k|t_{nk}|^2\right)^{1/2}
$$

(a particular case – when all columns of the matrix (t_{nk}) *are supported on* Λ_2 *sets with uniformly bounded constant), then the following are equivalent:*

- (1) T factors through an L_x space.
- (2) T^* is nuclear.
- (3) *T* is O-absolutely summing.*
- **(4)** $[\sum_{n,k} |t_{nk}|^2]^{1/2} < \infty$.

REMARK. Recently, Kisliakov proved and used in the proof of theorem I of [12] an inequality (lemma I) which is an easy corollary of Proposition 2.4.

We now turn to the

PROOF OF PROPOSITION 2.1. We bring two types of examples of operators

$$
T:H_{\infty}^{n}\to H_{2}^{n}
$$

for which

(8)
$$
\frac{\gamma_1(T)}{\pi_1(T)} \geq c \sqrt{\log n}.
$$

EXAMPLE 1. $\Lambda: H^n_* \to H^n_2$ is the multiplier $\Lambda = (\lambda_j)_{j=1}^n$, $\lambda_j = j^{-1/2}$ $(j = 1, \dots, n)$. A has a factorization

$$
H^n_* \xrightarrow{J} H^n_1 \xrightarrow{\tilde{\Lambda}} H^n_2
$$

where J is the formal identity and $\bar{\Lambda}$ is the multiplier defined by (λ_i) . We have

$$
\pi_1(\Lambda) \leq \|\tilde{\Lambda}\| \leq K \sup_{1 \leq m \leq n} \left[\frac{1}{m} \left(\sum_{j=1}^m j^2 j^{-1} \right)^{1/2} \right] \leq K
$$

(cf. $[4]$ theorem 6.7), K independent of n. On the other hand, from Corollary 2.3 (b) we get

$$
\gamma_1(\Lambda) \geq \frac{1}{B_p} \left(\sum_{j=1}^n j^{-1} \right)^{1/2} \sim \frac{1}{B_p} \sqrt{\log n}.
$$

EXAMPLE 2. $\Lambda: H^{2n}_* \to H^{2n}_2$ the Paley operator, defined as the multiplier $\Lambda = (\lambda_i)$, $\lambda_i = 1$ for $j = 2^k$ $(k = 0, \dots, n)$, $\lambda_j = 0$ for $j \neq 2^k$. By Paley's theorem we get $\pi_1(\Lambda) \leq ||\tilde{\Lambda}|| \leq K$, while by Corollary 2.3

$$
\gamma_1(\Lambda)\geq \frac{1}{B_p}\sqrt{n}.
$$

The proofs of Theorem 1.1 and Proposition 2.1 can be applied to show

THEOREM 2.5. Let $p = 1$, ∞ and E_p be an m-dimensional space for which $H_p \supseteq E_p \supseteq H_p^*$ (the inclusions here are the natural ones). Then

(a) cgl(E_{∞}) $\geq \sqrt{\log n}$.

(b) $cs^2(E_p) \ge m^{-1}n \sqrt{\log n}$ ($p = 1, \infty$).

Proof. (a) Let $S: H_{\infty} \to H_2$ be the operator defined by $S(f)$ $\Sigma_{k=1}^{\lfloor \log_2 n \rfloor} e_{2^k}(t) \int_0^{2\pi} f(s) \overline{e_{2^k}(s)} ds$. Factoring $S|_{E_n}: E_{\infty} \longrightarrow E_1 \longrightarrow E_1 \longrightarrow H_2$, where J is the identity, shows that

$$
\pi_1(S\mid_{E_\infty}) \leqq \pi_1(J) \|S\mid_{E_1} \| = \|S\mid_{E_1} \| \leqq c \qquad \text{(a constant)}.
$$

On the other hand, since $E_z \supseteq H^2$, by Example 2 above $\gamma_1(S \mid_{E_z}) \geq \gamma_1(S \mid_{H^2}) \geq$ $c \sqrt{\log n}$, which proves (a).

(b) The proof for $p = 1$ is identical to that of Theorem 1.1 (1), using the full strength of Lemma 1.2 which implies that E_1 contains $l_1^{[m]}$ uniformly complemented ($0 < y < 1$ independent of *n* and E_1), and then applying Lemma 1.3 together with the fact that E_1 contains $l_2^{[\log_2 n]}$ uniformly complemented and therefore

$$
\gamma_1(E_1) \geq c \gamma_1(l_2^{\lfloor \log_2 n \rfloor}) \geq c \sqrt{\log n}.
$$

In the case $p = \infty$, we note first that E_z contains $l_z^{[n/2]}$ uniformly complemented, and since L_{∞} is a Banach lattice, by [8] and (a) $\gamma_{\infty}(E_{\infty}) \geq g|(E_{\infty}) \geq c \sqrt{\log n}$, thus Lemma 1.3 concludes the proof.

REMARKS. (1) We do not know if the estimate of (b) for $p = \infty$ can be improved to $cs^2(E_\infty) \ge m^{-1}n \log n$ (which is true if $E_\infty = H_\infty^n$).

(2) Theorem 2.5 is no longer true if it is only assumed that $E_p \supset H_p^*$ isomorphically ($p = 1, \infty$), because by [25] (ch. X, theorem 7.28) and Theorem 1.4 above l_p^{4n} contains H_p^n uniformly for $p = 1$ and ∞ .

§3. Best factorization estimates for H_p^n spaces

By Theorem 1.4, if we take $\{P_k\}_{k=-n}^n$ to be the basis in H_p^{2n+1} , then $d(H_p^{2n+1}, l_p^{2n+1}) \leq c_p$ if $1 < p < \infty$, and $d(H_p^{2n+1}, l_p^{2n+1}) \leq c \log(n+1)$ if $p=1$ or ∞ . Since $d(l_p^n, l_q^n)$ is known for all values of p, q [10], it is easy to get trivial estimates for $d(H_p^{2n+1}, H_q^{2n+1})$, which are also asymptotically exact in n when $1 < q < p < \infty$. We shall derive here some better and more general estimates in the non-trivial cases where p or q is in $\{1, \infty\}$.

Given Banach spaces E, F and G, let $\mathcal{F}(E, F, G)$ denote the quantity inf $||A|| ||B|| ||C||$, where the infimum ranges over all $A \in L(E, F), B \in L(F, G)$, $C \in L(G, E)$ for which *CBA* = 1_E. If *F* = *G*, we write $\mathcal{F}(E, F) = \mathcal{F}(E, F, F)$, and clearly $d(E, F) = \mathcal{F}(E, F)$ if E and F are isomorphic.

If we denote by $P_p^{(n)}$ the natural projection of L_p onto H_p^n , it is well known that $||P_p^{(n)}|| \leq c_p$ for $1 < p < \infty$ [4], and $||P_p^{(n)}|| \leq c \log(n+1)$ if $p=1$ or ∞ , thus $\mathcal{F}(H_p^n, H_p) \leq c_p$ if $1 < p < \infty$, and $\mathcal{F}(H_\infty^n, H_\infty) \leq c \log(n+1)$. Bourgain and Pelczynski recently proved $\mathcal{F}(H_p^n, H_p) \leq C_p$ for all $1 \leq p \leq \infty$.

Throughout we denote by c, c_1, c_2 , etc., constants, and by c_p constants which depend on p; the same letter may denote different constants in some cases.

We start with the following straightforward lemma whose proof is omitted.

LEMMA 3.1. Let $I_{p,q}^{(n)}: H_p^n \to H_q^n$ be the natural injection, then $||I_{p,q}^{(n)}|| \sim$ $max\{1, n^{1/p-1/q}\}\$ for every $p, q \in [1, \infty]$.

If T is an operator on l_2^n into some Banach space, $l(T)$ will denote $(\mathbf{E}_{\omega} \| \Sigma_{i=1}^n g_i(\omega) T(e_i) \|^2)^{1/2}$, where $\{g_i(\omega)\}_i^n$ is a sequence of standard independent normalized Gaussian variables, and $\{e_i\}^n$ any orthonormal basis for l^n (see [1] for details and references).

LEMMA 3.2. If $1 \leq p < \infty$, then for all $n > 1$

$$
l(I_{2,x}^{(n)^{n-1}}) \sim l(I_{2,p}^{(n)}) \sim \sqrt{n},
$$

and

$$
l(I_{2,\infty}^{(n)}) \sim \sqrt{n \log n}.
$$

PROOF. For convenience we replace n by $2n + 1$ and denote by $Q_k^{(p)} =$ $\sqrt{2n+1}P_k$ $(k = 0, \pm 1, \dots, \pm n)$ the basis for the space H_p^{2n+1} . Let L_p^{2n+1} be the L_p space of dimension $2n + 1$ with the normalized measure that assigns mass $(2n + 1)^{-1}$ to each basis element $e_k^{(p)}$, $k = 0, \pm 1, \dots, \pm n$.

If $T: H_p^{2n+1} \to L_p^{2n+1}$ is the basis to basis map $Q_k^{(p)} \to e_k^{(p)}$, then by Theorem 1.4 both $||T||$ and $||T^{-1}||$ are uniformly bounded with respect to *n* for every $1 < p < \infty$. Thus the estimates for $1 < p < \infty$ follow from the same estimates for L_{p}^{2n+1} which are easy to verify (see e.g. [1]).

If $p = 1$, using the well known properties of the Gaussian variables we have

$$
l(I_{2,1}^{(n)}) = \left(\mathbf{E} \left\| \sum_{k=1}^{n} g_k e^{ikt} \right\|_{H_1^n}^2\right)^{1/2}
$$

$$
\sim \mathbf{E} \left\| \sum g_k e^{ikt} \right\|_{H_1^n} = \frac{1}{2\pi} \int_0^{2\pi} \left(\mathbf{E} \left\| \sum g_k e^{ikt} \right\| \right) dt
$$

$$
\sim \frac{1}{2\pi} \int_0^{2\pi} \left(\sum |e^{ikt}|^2 \right)^{\frac{1}{2}} dt = \sqrt{n}.
$$

The case $p = \infty$ needs some additional computations. Since $Q_k = \sqrt{2n + 1} P_k$ $(k = 0, \pm 1, \dots, \pm n)$ is an orthonormal basis for H_2^{2n+1} and the quantities

$$
l(I_{2,\infty}^{(2n+1)}) \sim E_{\omega} \bigg\| \sum_{k=-n}^{n} g_k(\omega) e_k \bigg\|_{H_{\infty}^{2n+1}}
$$

are both independent of the choice of the orthonormal basis $\{e_k\}_{k=-n}^n$ in H_2^{2n+1} , therefore it is enough to prove $E_{\omega} \|\sum_{k=-n}^{n} g_k(\omega)P_k\|_{\infty} \sim \sqrt{\log n}$.

Since $P_k(2\pi i/(2n+1)) = \delta_{k,i}$, it follows that $E \|\sum g_k P_k\|_{\infty} \geq E(\max_i |g_i|)$ $\sqrt{\log n}$.

To prove the converse inequality, let $A = [\|\Sigma g_k(\omega)P_k\|_{\infty} > \alpha]$, where α will be chosen later. Then

$$
\mathbf{E} \left\| \sum g_k P_k \right\|_{\infty} \leq \alpha + \int_A \left\| \sum g_k P_k \right\|_{\infty} \mathcal{P}(dw)
$$

$$
\leq \alpha + \sum \int_A |g_k(\omega)| \mathcal{P}(dw) \leq \alpha + (2n + 1) \sqrt{\mathcal{P}(A)}.
$$

Let $t_k = k\pi/4n$ ($k = 0, \pm 1, \dots, \pm 4n$). By theorem 7.28 [25] there exists $c_1 > 0$ (independent of n) for which $||P||_{H_{\infty}^{2n+1}} \leq c_1 \max_k |P(t_k)|$ for every $P \in H_{\infty}^{2n+1}$. Therefore

$$
\mathcal{P}(A) \leq \mathcal{P}\left(\left[\max_{i} \left|\sum_{k=-n}^{n} g_{k}(\omega)P_{k}(t_{i})\right| > \alpha/c_{1}\right]\right)
$$

\n
$$
\leq 10n \max_{i} \mathcal{P}\left(\left[\left|\sum_{k=-n}^{n} g_{k}(\omega)P_{k}(t_{i})\right| > \alpha/c_{1}\right]\right)
$$

\n
$$
\leq 10n \max_{i} \mathcal{P}\left(\left[\left|\sum_{k=-n}^{n} g_{k}(\omega)P_{k}(t)\right| > \alpha/c_{1}\right]\right).
$$

Due to the symmetry of the expression in the intervals

$$
I_k = \left[\frac{(2k-1)\pi}{2n+1}, \frac{(2k+1)\pi}{2n+1} \right] \qquad (k = 0, \pm 1, \cdots, \pm n)
$$

the maximum is achieved at $t_0 \in I_0$. Using the identity

$$
P_k(t) = P_0 \left(t - \frac{2\pi k}{2n+1} \right) = \frac{(-1)^k \sin \left(n + \frac{1}{2} \right) t}{(2n+1) \sin \left(\frac{t}{2} - \frac{k\pi}{2n+1} \right)}
$$

it follows that $|P_0(t)| \leq 1$ and $|P_k(t)| \leq c_2/|k|$ for all $1 \leq |k| \leq n$ and $t \in I_0$, hence by the contraction principle

$$
\mathscr{P}\left(\left[\left|\sum g_{k}(\omega)P_{k}(t_{0})\right|>\alpha/c_{1}\right]\right)\leq \mathscr{P}\left(\left[\left|g_{0}(\omega)+\sum_{1\leq |k|\leq n}\frac{g_{k}(\omega)}{k}\right|>\alpha/c_{1}c_{2}\right]\right)
$$

$$
\leq \mathscr{P}\left(\left|\left|g_{0}(\omega)\right|>\alpha/2c_{1}c_{2}\right]\right)+\mathscr{P}\left(\left[\left|\sum_{1\leq |k|\leq n}\frac{g_{k}(\omega)}{k}\right|>\alpha/2c_{1}c_{2}\right]\right).
$$

By Tchebychev's inequality

$$
\mathscr{P}\left(\left[\left|\sum_{1\leq |k|\leq n}\frac{g_k}{k}\right|>c_3\alpha\right]\right)\leq 2e^{-c_4\alpha^2\sqrt{2}1/k^2}\leq 2e^{-c_5\alpha^2}
$$

and so

$$
\mathcal{P}(A) \leq c_6 n e^{-c_7 \alpha^2}.
$$

Therefore, $(2n + 1)^2 \mathcal{P}(A) \leq c_6(2n + 1)^2 n e^{-c_7 \alpha^2}$ which shall tend to zero if we choose $\alpha = 2c_7^{-1/2}\sqrt{\log(n+1)}$. This completes the proof of $l(I_{2,\infty}^{(n)}) \sim \sqrt{n \log n}$.

Since $(H_n^*)^*$ is identified with $L_1(T)/M_n$, therefore

$$
l(I_{2,\infty}^{(n)^{n-1}})=\left(\mathbf{E}\left\|\sum g_{k}e^{ikt}\right\|^{2}_{(H_{\infty}^{n})^{*}}\right)^{1/2}\leq l(I_{2,1}^{(n)})\sim\sqrt{n}.
$$

On the other hand it follows from the boundedness of the natural operator $R_n: L_1(T)/M_n \to L_{1/2}(T)$ and Kahane's inequality that

$$
l(I_{2,x}^{(n)^{*-1}}) \sim \mathbf{E} \left\| \sum_{i=1}^{n} g_{k} e^{ikx} \right\|_{(H_{2})^{*}} \geq c \mathbf{E} \left\| \sum_{i=1}^{n} g_{k} e^{ikx} \right\|_{H_{1/2}^{n}}
$$

$$
\sim \left(\mathbf{E} \left\| \sum_{i=1}^{n} g_{k} e^{ikx} \right\|_{H_{1/2}^{n}}^{1/2} \right)^{2} = \left(\int_{\mathbf{T}} \mathbf{E} \left\| \sum_{i=1}^{n} g_{k} e^{ikx} \right\|^{1/2} dm \right)^{2}
$$

$$
\sim \left(\int_{\mathbf{T}} \left(\mathbf{E} \left\| \sum_{i=1}^{n} g_{k} e^{ikx} \right\|^{2} \right)^{1/4} dm \right)^{2} = \sqrt{n}.
$$

If $\{x_i\}^n$ is a finite sequence of vectors in a Banach space X, we denote $\varepsilon_2(x_i)=\sup\left(\|\sum t_i x_i\|/(\sum |t_i|^2)^{1/2}\right)$, which is also the norm of the map $l_2^n\to X$ induced by $e_i \rightarrow x_i$.

We shall need the following theorem proved in [1].

THEOREM 3.3. Let E, F, G be Banach spaces, $F \subseteq G$, and suppose $\{e_i, e^*\}_{i=1}^n$ *is a basis with associated coefficient functionals for E, and* $\{f_i, f_j^*\}_{j=1}^m$ *is a biorthogonal sequence in G where* ${f_i}_{i=1}^m \subset F$ *and* $m \ge n$. Then

$$
\mathscr{F}(E, F, G) \leq c m^{-1} \left\{ \varepsilon_2(e^*) \mathbf{E}_{\omega} \middle\| \sum_{j=1}^n g_j(\omega) f_j \middle\| + \varepsilon_2(f_j) \mathbf{E}_{\omega} \middle\| \sum_{i=1}^n g_i(\omega) e^* \middle\| \right\} \cdot \left\{ \varepsilon_2(e_i) \mathbf{E}_{\omega} \middle\| \sum_{j=1}^m g_j(\omega) f^* \middle\| + \varepsilon_2(f^*) \mathbf{E}_{\omega} \middle\| \sum_{i=1}^n g_i(\omega) e_i \middle\| \right\}.
$$

THEOREM 3.4. *For every Banach space X, Y for which* $H^n \subseteq X \subseteq L_\infty$, $H^n \subseteq$ $Y \subseteq L_1$ *, and every* $1 < p < \infty$

(i) $\mathscr{F}(H_p^n, H_{\infty}^n, X) \sim d(H_p^n, H_{\infty}^n) \sim \min\{n^{1/p}, n^{1/2}\},$

(ii) $\mathscr{F}(H_p^n, H_1^n, Y) \sim d(H_p^n, H_1^n) \sim \min\{n^{1/2}, n^{1-1/p}\}.$

PROOF. (i) We factor the identity on H_p^n as follows:

$$
H_p^n \xrightarrow[I_{p,\infty}^{(n)}]{} H_n^n \longrightarrow X \longrightarrow L_p \xrightarrow[I_{p}^{(n)}]{} H_p^n
$$

where j is the inclusion, I is the restriction to X of the injection $L_* \rightarrow L_p$. Using the estimates of Lemma 3.1

$$
d(H_p^n, H_{\infty}^n) \leq \mathscr{F}(H_p^n, H_{\infty}^n, X) \leq \|I_{p,\infty}^{(n)}\| \|I\| \|I\| \|P_p^{(n)}\| \leq c_p n^{1/p}.
$$

Conversely, if we denote by $\alpha_p(E)$ ($\beta_p(E)$) the type p (cotype p) constants of a Banach space E, then using the facts that H_{∞}^{n} contains $l_{\infty}^{[n/2]}$ uniformly, and that L_p has cotype p if $p \ge 2$, it follows that $d(H_p^n, H_x^n) \ge \beta_p(H_x^n)/\beta_p(H_p^n) \ge$ $c_p\beta_p (l_{\infty}^{[n/2]}) \sim n^{1/p}$. Thus (i) is proved for $p \ge 2$.

Let $1 < p \le 2$ and $\{e^{ikt}, e^{ikt}\}_{k=1}^n$ be the basis, and biorthogonal sequence, in the spaces H_p^n and X respectively. Applying the estimates of Lemmas 3.1 and 3.2 we get

$$
\varepsilon_2(\lbrace e^{ikt}\rbrace \subset H_p^n) = \|I_{z,p}^{(n)}\| = 1,
$$

\n
$$
\varepsilon_2(\lbrace e^{ikt}\rbrace \subset (H_p^n)^*) = \|I_{p,2}^{(n)}\| \sim n^{1/p-1/2},
$$

\n
$$
\varepsilon_2(\lbrace e^{ikt}\rbrace \subset H_z^n) = \|I_{z,z}^{(n)}\| \sim \sqrt{n},
$$

\n
$$
\varepsilon_2(\lbrace e^{ikt}\rbrace \subset X^*) \leq \varepsilon_2(\lbrace e^{ikt}\rbrace \subset L_1) = \|I_{z,1}^{(n)}\| = 1,
$$

\n
$$
\mathbf{E} \|\sum g_k e^{ikt}\|_{H_p^n} \sim \mathbf{E} \|\sum g_k e^{ikt}\|_{(H_p^n)^*} \sim \sqrt{n},
$$

and

$$
\mathbf{E} \left\| \sum g_k e^{ikt} \right\|_{H_x^0} \sim \sqrt{n \log n},
$$

$$
\mathbf{E} \left\| \sum g_k e^{ikt} \right\|_{X^*} \leq \mathbf{E} \left\| \sum g_k e^{ikt} \right\|_{L_1} \sim \sqrt{n},
$$

so on using Theorem 3.3 we get

$$
\mathscr{F}(H_p^n,H_\infty^n,X)\leq c_p\sqrt{n}.
$$

Since H_{∞}^{n} contains $l_{\infty}^{\lfloor n/2 \rfloor}$ uniformly, using the fact that L_{p} has cotype 2 if $1 \leq p \leq 2$, the lower estimate follows from

(9)
$$
\mathscr{F}(H_p^n,H_x^n,X)\geq d(H_p^n,H_x^n)\geq c_p\beta_2(H_x^n)\geq c_p\beta_2(I_x^{(n/2)})\sim \sqrt{n}.
$$

(ii) If $1 < p \leq 2$, consider the factorization of H_p^n

$$
H_{p}^{n} \xrightarrow[I_{p,1}^{(n)}]{} H_{1}^{n} \longrightarrow Y \xrightarrow[I]{} H_{p}^{n}
$$

where j is the inclusion and R is the operator from L_1 to H_p^n defined by

$$
R(f)=\frac{1}{2\pi}\sum e^{ikt}\int_0^{2\pi}f(s)e^{-iks}ds.
$$

Identifying $(H_p^*)^*$ with H_p^* . $(1/p + 1/p^* = 1)$, we obtain

$$
\|R\| = \|R^*\| \leq c_p \|I_{p^*,\infty}^{(n)}\| \sim n^{1/p^*}
$$

so $d(H_n^n, H_1^n) \leq \mathcal{F}(H_n^n, H_1^n, Y) \leq c_n n^{1/p^n}$.

Conversely, since H_1^n contains $l_1^{|n/2|}$ uniformly and L_p has type p if $1 < p \le 2$, it follows that

$$
d(H_p^n, H_1^n) \geq \alpha_p(H_1^n) / \alpha_p(H_p^n) \geq c_p \alpha_p(l_1^{|n/2|}) \geq c_p \left\lfloor n/2 \right\rfloor^{1/p^*}.
$$

If $2 \leq p < \infty$ we apply the estimates of Lemmas 3.2 and 3.3 together with Theorem 3.4 to get in the same manner as in (i) the inequality $\mathcal{F}(H_n^*, H_1^*, Y) \leq$ $c_p \sqrt{n}$. On the other hand, since H_1 ⁿ contains a uniformly complemented subspace of dimension $\lceil \gamma n \rceil = m$ uniformly isomorphic to l^m (for $0 < \gamma < 1$) independent of n), therefore $(H_1^*)^*$ contains l_*^m uniformly, and so identifying $(H_p^*)^*$ with a subspace of L_p and using the fact that every operator from $l^m \times l^p$. is 2-summing, we obtain

$$
d(H_1^n, H_p^n) = d((H_1^n)^*, (H_p^n)^*)
$$

\n
$$
\geq c_p \inf\{d(Z, l_x^n); Z \subset L_p, \dim Z = m\}
$$

\n
$$
\geq c_c_p \inf\{\pi_2(Z); Z \subset L_p, \dim Z = m\}
$$

\n
$$
\sim \sqrt{n}
$$

since $\pi_2(Z) = \sqrt{\dim Z}$ for every Banach space Z [6].

THEOREM 3.5. *If* $\{p, q\} = \{1, \infty\}$ *and* X_q *is any space satisfying* $H_q^n \subseteq X_q \subseteq L_q$, *then*

 $c\sqrt{n} \leq d(H^n_1, H^n_2) \leq \mathcal{F}(H^n_2, H^n_3, X_a) \leq d\sqrt{n \log n}$

for all integers $n \ge 2$ *.*

PROOF. The lower estimate follows from inequality (9) above. The upper estimate follows from using the estimates of Lemmas 3.1 and 3.2 together with Theorem 3.3. \Box

REMARKS. (1) It is unknown whether any of the inequalities in Theorem 3.5 is sharp.

If however the dimension of H_q^n is increased to $a \cdot n$ in Theorem 3.5 then $\mathscr{F}(H_{p}^{n}, H_{q}^{an}) \sim \sqrt{n}$, where $2 \le a < \infty$ is independent of *n*. Indeed H_{∞}^{2n} contains l_{∞}^{n} uniformly complemented, hence it suffices to prove $\sqrt{n} \ge d(l^{\pi}_{*}, H^{n}_{i})$. But if $T: H_1^n \to l_*^n$ is the map defined by $T(e^{ik}) = e_k$ $(1 \le k \le n)$, then $||T|| = ||T^*|| = 1$ and

$$
\|T^{-1}\| = \|T^{-1}\| = \sup \left(\sum_{i=1}^{n} |t_{k}| / \left\| \sum_{i=1}^{n} t_{k} e^{ikt} \right\|_{(H_{i,j}^{n})}\right)
$$

$$
\leq \sup \left(\sum |t_{k}| / \sqrt{\sum |t_{k}|^{2}} \right) = \sqrt{n}.
$$

Similarly H_1^{an} contains l_1^n uniformly complemented for some $\infty > a \ge 2$ independent of *n*, hence it suffices to prove $d(l_1^n, H_n^n) \leq \sqrt{n}$ to imply that $\mathscr{F}(H^{\pi}_{\infty}, H^{\text{an}}_{\perp}) \leq c \sqrt{n}$. But the proof is identical for this case too. The facts that $\mathcal{F}(H_{\nu}^{n}, H_{q}^{an}) \ge c \sqrt{n}$ if $\{p,q\} = \{1,\infty\}$ are proved as in Theorems 3.4 and 3.5.

(2) It is easy to see that

$$
c_1\sqrt{\log n}\leq d(H_1^n,l_1^n)\leq c_2\log n.
$$

It would be interesting to know the exact values for this quantity.

§4. A remark on absolutely summing operators from H_z

In this section, which is not directly connected with the preceding sections, we bring an observation which answers problem 3.2 in [18].

Theorem 2.4 in [18] asserts that for $1 < p < \infty$ every p-absolutely summing operator from A is strictly p -integral and there is a constant C_p such that

$$
i_p(T)\leq C_p\pi_p(T)
$$

for all such T. Problem 3.2 asks whether every p -a.s. T from H_{∞} is p -integral.

PROPOSITION 4.1. *For every Banach space E and* $T \in \pi_p$ (H_x, E) ($1 < p < \infty$) *T is p-integral and*

$$
i_p(T) \leq C_p \pi_p(T).
$$

(Cp is the same constant as above.)

PROOF. For Banach spaces E, F and $T: E \rightarrow F$ a linear operator, we define $(i_p/\pi_p)(T)$ to be

$$
\frac{i_{p}}{\pi_{p}}(T)=\sup i_{p}(ST);
$$

the sup is taken over all Banach spaces G and operators $S: F \rightarrow G$ with $\pi_p(S) \leq 1$. *i_p* and π_p are perfect ideal norms, also π_p is semi-tensorial (see [22] for definition) hence by [22] proposition 2.7 we conclude that i_p/π_p is a perfect ideal norm.

From [20] it follows now that $i_p/\pi_p = (i_p/\pi_p)''$, i.e. $(i_p/\pi_p)(T) = (i_p/\pi_p)(T^{**})$ for all operators $T: E \to F$.

 H_{\times} is a 1-complemented subspace of A^{**} ; it is enough, therefore, to show that

$$
\frac{i_p}{\pi_p} (\mathrm{Id}_A \cdot \cdot) \leq C_p.
$$

By theorem 2.4 [18] we have

$$
\frac{i_p}{\pi_p} (\mathrm{Id}_A) \leq C_p
$$

hence

$$
\frac{i_p}{\pi_p} (\mathrm{Id}_A \cdot \cdot) = \frac{i_p}{\pi_p} (\mathrm{Id}_A^{**}) = \left(\frac{i_p}{\pi_p}\right)^n (\mathrm{Id}_A) = \frac{i_p}{\pi_p} (\mathrm{Id}_A) \leq C_p.
$$

REFERENCES

1. Y. Benyamini and Y. Gordon, *Random factorization of operators between Banach spaces, J.* Analyse Math. 39 (1981), 45-74.

2. J. Bourgain, *A remark on finite dimensional P, spaces,* Studia Math., to appear.

3. E. W. Cheney and K. H. Price, *Minimalprojections,* in *Approximation Theory Proc. Lancaster 1969 Syrup.,* Academic Press, 1970.

4. P. Duren, *Theory of H^p Spaces*, Academic Press, 1970.

5. X. M. Fernique, *Regularitd des trajectories des fonctions aldatoires Gaussiens,* Lecture Notes in Math. 480, Springer Verlag, 1975, pp. 1-96.

6. D. J. H. Garling and Y. Gordon, *Relations between some constants associated with finite dimensional Banach spaces,* Israel J. Math. 9 (1971), 346--361.

7. Y. Gordon, *p-local unconditional structure of Banach spaces,* Compositio Math. 41 (1980), 189-205.

8. Y. Gordon and D. R. Lewis, *Absolutely summing operators and local unconditional structures,* Acta Math. 133 (1974), 27-48.

9. Y. Gordon, D. R. Lewis and J. R. Retherford, *Banach ideals of operators with applications*, J. Functional Analysis 14 (1973), 85-129.

10. V. I. Gurarii, M. I. Kadec and V. I. Macaev, *Distances between finite dimensional analogues of Lp spaces,* Math. Sb. 70 (112) (1966), 481-489.

11. W. Johnson and G. Schechtman, *On subspaces of L₁ with maximal distance to Euclidean spaces,* Proceeding of University of Iowa, to appear.

12. S. V. Kisliakov, *What is needed for a O-absolutely summing operator to be nuclear?* Complex Analysis and Spectral Theory Seminar, Leningrad 1969/80, Lecture Notes in Math. 864, Springer-Verlag.

13. S. Kwapien, *On a theorem of L. Schwartz and its applications to absolutely summing operators,* Studia Math. 38 (1970), 193-201.

14. S. Kwapien and A. Pelczynski, *Remarks on absolutely summing translation invariant operators from the disc algebra and its dual into a Hilbert space,* Michigan Math. J. 25 (1978), 173-181.

15. J. Lindenstrauss and L. Tzafriri, *Classical Banach Spaces,* Vols. I and II, Springer Verlag, 1977 and 1979.

16. B. Maurey, *Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans les espaces* L^p, Soc. Math. France, Asterisque 11, 1974.

17. B. Maurey, *Isomorphismes entre espaces H,* Acta Math. 145 (1980), 79-120.

18. A. Pelczynski, *Banach spaces of analytic functions and absolutely summing operators*, AMS Regional Conference Series in Math., 30, Providence, 1977.

19. A. Persson and A. Pietsch, *p-nukleare und p-integrale operatoren in Banach Räumen*, Studia Math. 33 (1969), 21-62.

2(1. A. Pietsch. *Adjungierte normierten operatoren-ideale,* Math. Nachr. 48 (1971), 189-211.

21. A. Pietsch, *Operator Ideals,* North-Holland, 1980.

22. S. Reisner, *On Banach spaces having the property* G.L., Pacific J. Math. 83 (1979), 505-521.

23. L. Schwartz, *Applications du théorème de dualité sur les applications p-radonifiantes*, C. R. Acad. Sci. Paris 268 (1969), 1612-1615.

24. P. Wojtaszczyk, *The Franklin system is an unconditional basis in H,,* preprint.

25. A. Zygmund, *Trigonometric Series L IL* Cambridge University Press, London and New York, 1959.

TEXAS A&M UNIVERSITY

COLLEGE STATION, TX 77843 USA

AND

TECHNION -- ISRAEL INSTITUTE OF TECHNOLOGY

HAIFA, ISRAEL